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Generalized Linear Models

We have spent a fair amount of time going over general linear models, but these are just special cases of
general-IZED linear models for which the errors are normally distributed. But in many cases our observations
are bounded (i.e. must be positive, or must be between zero and one), which can lead to errors that are
not normally distributed. Luckily, generalized linear models (GLiMs) are very flexible and can handle any
error distribution from an exponential family of distributions (e.g. normal, Poisson, binomial, multinomial,
exponential, gamma, negative binomial). Some of these might be familiar to you. One of the most ‘famous’
GLiMs is a logistic regression in which we are trying to predict a response variable that can take on values of
zero or one (or a proportion) by a set of continuous or categorical covariates.

Link Functions

One key feature of a GLiM is that it involves a link function, which is a function that is applied to the
response variable (like a transformation). For example, in a Poisson GLiM the default link function is a log
link function. As a result we are modelling the log(Y) rather than Y. This is important to remember because
if we are to make sense of the parameters in the model we need to remember that the parameters will predict
log(Y) (i.e. on the link scale) rather than Y (i.e. on the raw scale). It is also worth pointing out that you
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don’t need to worry about adding a small constant to your response variable if there are zeros (because log(0)
is undefined) like you would if you wre transforming your response variable - the link function takes care of
this. Similarly, the default link function for a binomial model is the logit link function.

In addition to a link function, GLiMs also specify a variance function. The variance function described the
relationship between the mean and the variance. This allows for proper calculation of the variance under
non-normal conditions. This ability to separately specify the link function and the variance function in a
GLiM provides a lot of flexibility to be able to put together an appropriate model.

Why not just transform the data and do a glm?

Transformations often do a pretty good job of stabilizing the variance, but they often have trouble fixing
the skewness in the data. We are also often wanting to both linearize a reslationship and normalize the
residulas with a single transformation and this is often a tall task. So in most cases, a GLiM is preferrable to
transformaing the response variable to run a glm.

How does GLiM estimate the paramters?

Whereas a glm solves for the set of parameters by minimizing the squared residuals (sums of squares approach),
this is not possible for GLiMs. Instead they use an iterative procedure called iterative weighted least squares.
This cannot be done by hand, but is easy to do with a computer. This is why logistic regression only became
a popular statistical approach in biology in the 1970s.

Implementing a GLiM in R

In order to run a GLiM in R, we need to specify the link function and the distribution of the errors. Otherwise
the model specification is the same.

There are some additional packages that we will load for GLiMs
library (gam)

## Loading required package: splines

## Loading required package: foreach

## Loaded gam 1.20
library (MASS)
library (boot)

We are going to return to the lizard egg data to start with. I am going to load a new data file.
egg2<-read.table("data/egg.temp2.csv", sep=",", header=T)

summary (egg2)

## LayDay clutch bin postlay
## Min. : 75.0 Min. :1.000 Min. : 19.0 Min. :3.250
## 1st Qu.: 96.0 1st Qu.:1.000 1st Qu.:115.0 1st Qu.:4.430
## Median :115.0 Median :2.000 Median :136.0 Median :4.810
## Mean :118.6 Mean :1.653 Mean :133.5 Mean :4.832
## 3rd Qu.:140.0 3rd Qu.:2.000 3rd Qu.:158.0 3rd Qu.:5.210
## Max. :188.0 Max. :4.000 Max. :178.0 Max. :7.220
## clutch.size eggcode eggmass post.eggmass
## Min. :1.000 Length:1247 Min. :0.26 Min. :0.1900
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## 1st Qu.:4.000 Class :character 1st Qu.:0.40 1st Qu.:0.3500
## Median :5.000 Mode :character Median :0.44 Median :0.4100
## Mean :5.018 Mean :0.44 Mean :0.4048
## 3rd Qu.:6.000 3rd Qu.:0.48 3rd Qu.:0.4500
## Max. :9.000 Max. :0.91 Max. :0.9100
## dam.oby hatch
## Length:1247 Min. :0.0000
## Class :character 1st Qu.:0.0000
## Mode :character Median :1.0000
## Mean :0.7298
## 3rd Qu.:1.0000
## Max. :1.0000

Meta-Data

These data were from a captive breeding experiment I ran with side-blotched lizards (Uta stansburiana) while
I was a postdoc at UC Santa Cruz with Barry Sinervo. Multiple female lizards and one male were housed
within a single holding holding area (bin).

You should get used to writing out similar data descriptions in your own Rmd files. They are very helpful!

• LayDay - day of the year (Julian date) on which teh egg was laid.

• clutch - whether the clutch was the first, second, third, or fourth clutch of the year.

• bin - the housing bin in which the female was raised. There were more than one female per bin.

• postlay - mass of female after she finished laying her eggs (g?).

• clutch.size - number of eggs in the clutch.

• eggcode - whether or not the egg was miniaturized by removing some yolk. (C = control; M =
miniaturized).

• eggmass - mass of the egg (g) when laid.

• post.eggmass - mass of the egg (g) after yolk was removed.

• dam.oby - throat colour genotype of the mother.

• hatch - whether or not the egg successfully hatched (0 = no; 1 = yes).

This datafile is similar to the egg.temp.csv file that we have worked with in the past, but this one also includes
a response variable that indicates whether or not the egg hatched (hatch)

Note that about 73% of the eggs hatched We will need to change “bin” to a factor
egg2$bin<-factor(egg2$bin)

Specifying a GLiM in R

We will start with a GLiM to predict whether or not an egg will hatch. This is a binary response so we will
be dealing with a binomial family. In this case the GLiM is the equivalent of a logistic regression.
hatch.glm<-glm(hatch~eggcode+LayDay+post.eggmass, family=binomial, data=egg2)

Note that we are using glm instead of lm and we therefore need to specify the family type. We did not specify
a link function so the default “link=logit” is used.
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summary (hatch.glm)

##
## Call:
## glm(formula = hatch ~ eggcode + LayDay + post.eggmass, family = binomial,
## data = egg2)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3011 -1.1999 0.6390 0.8161 1.3262
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.847376 0.507975 -3.637 0.000276 ***
## eggcodeM -0.509826 0.150804 -3.381 0.000723 ***
## LayDay 0.012742 0.002738 4.654 3.25e-06 ***
## post.eggmass 3.992286 1.105930 3.610 0.000306 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1455.3 on 1246 degrees of freedom
## Residual deviance: 1375.4 on 1243 degrees of freedom
## AIC: 1383.4
##
## Number of Fisher Scoring iterations: 4

Note that this is very similar to what we are used to seeing. Instead of dealing with variance though we are
dealing now with DEVIANCE. Deviance is defined to be twice the difference between the log-likilihood of the
best possible model and the log-likelihood of the current model. The log-liklihood of the best possible model
is based on the variance in your response variable.

Also note that we are no longer testing the significance of our parameters based on a t test statistic. Instead
we are now using a Z test statistic. This test statistic does not have an associated degrees of freedom. So
when you report the significance of a parameter in a GLiM you would report b+/-SE, Z and P (no df needed).

The proportion of deviance explained is
1-1375.4/1455.3

## [1] 0.05490277

This is the summary command but we can also test the significance of terms rather than parameters using
the anova command.
anova (hatch.glm, test="Chi")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: hatch
##
## Terms added sequentially (first to last)
##
##
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## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 1246 1455.3
## eggcode 1 32.635 1245 1422.6 1.112e-08 ***
## LayDay 1 33.547 1244 1389.1 6.955e-09 ***
## post.eggmass 1 13.635 1243 1375.5 0.000222 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that in this case the terms are assessed from first to last. The model is assessed in a “Type I” style
where the order matters. This analysis is basically a series of likelihood ratio tests, comparing progressively
more complex models.

Testing Assumptions in GLiMs

Many of the assumptions of a GLiM are similar to the assumptions of a glm. These include:

• Independence of observations - good sampling
• Correct specification of the variance function
• Correct specification of the link function
• Correct form of the explanatory variables - look for nonlinearities
• Lack of undue influence of individual observations – Cook’s distance
• Correct specification of the dispersion parameter

Diagnostic Plots

Regular diagnostic plots don’t help us very much for GLiMs.
par (mfrow=c(2,2))
plot (hatch.glm)
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Note that the residuals are never going to look very good in a binomial glm. We are used to using these plots
to test for homogeneity in the residuals, but in a GLiM the residuals are never going to appear homogeneous,
because the response variable is often very discontinuous. Nevertheless, we can still use these diagnostics to
look at points with high leverage and high residuals (the last plot - Cook’s distances).

There is a nice package for assessing diagnostic plots for GLiMs. More information can be found at: https:
//theoreticalecology.wordpress.com/2016/08/28/dharma-an-r-package-for-residual-diagnostics-of-glmms/

Here is the Vignette: https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html

I will use it here.
#install.packages("DHARMa")
library (DHARMa)

## This is DHARMa 0.3.2.0. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa') Note: Syntax of plotResiduals has changed in 0.3.0, see ?plotResiduals for details
simulation_output_hatch.glm<-simulateResiduals(fittedModel = hatch.glm, n = 250)

Here we now expect a uniform distribution (flat distribution) of simulated residuals.

We can visualize these simulated residuals using
plot(simulation_output_hatch.glm)
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DHARMa residual diagnostics

So the above plot shows no deviation from the expected distribution. In the plot on the right, ‘outliers’ are
plotted as red stars. The red lines in the plot on the right should be straight accross and at the values on the
y axis of 0.25, 0.5 and 0.75. These look very good above!!

We should also test whether there is a relationship between the residuals and our specific predictors
plotResiduals(egg2$LayDay, simulation_output_hatch.glm$scaledResiduals)
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This also looks very good.

This package also runs some specific tests, which seem very nice!
testUniformity(simulation_output_hatch.glm)
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##
## One-sample Kolmogorov-Smirnov test
##
## data: simulationOutput$scaledResiduals
## D = 0.040955, p-value = 0.0305
## alternative hypothesis: two-sided
testOutliers(simulation_output_hatch.glm)
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##
## DHARMa outlier test based on exact binomial test
##
## data: simulation_output_hatch.glm
## outliers at both margin(s) = 0, simulations = 1247, p-value = 8.536e-05
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.000000000 0.002953832
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
## 0
testDispersion(simulation_output_hatch.glm)
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.824
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##
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## ratioObsSim = 1.0023, p-value = 0.824
## alternative hypothesis: two.sided
#testZeroinflation(simulation_output_hatch.glm)
#testGeneric(simulation_output_hatch.glm)
testTemporalAutocorrelation(simulation_output_hatch.glm)

## DHARMa::testTemporalAutocorrelation - no time argument provided, using random times for each data point
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##
## Durbin-Watson test
##
## data: simulationOutput$scaledResiduals ~ 1
## DW = 1.9162, p-value = 0.1386
## alternative hypothesis: true autocorrelation is not 0
testSpatialAutocorrelation(simulation_output_hatch.glm)

## DHARMa::testSpatialAutocorrelation - no x coordinates provided, using random values for each data point

## DHARMa::testSpatialAutocorrelation - no x coordinates provided, using random values for each data point
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##
## DHARMa Moran's I test for spatial autocorrelation
##
## data: simulation_output_hatch.glm
## observed = 0.00310943, expected = -0.00080257, sd = 0.00205912, p-value
## = 0.05745
## alternative hypothesis: Spatial autocorrelation

Over-Dispersion

One important test above is the test for overdispersion. In a GLiM the error variance is not estimated. Instead
it is fixed at some value based on the variance function that is determined by the assumed distribution. If your
data don’t fit this assumed distribution well then the model could be over-dispersed (too much unexplained
variation) or under-dispersed (too little variation). Overdispersion can cause your inferences to be overly
liberal (too likely to reject the null; p-values are too small) so it is of concern. There are several possible
causes of over-dispersion including:

• unexplained variation - try including an additional predictor to account for this variation. Sometimes,
however, there is nothing you can do.

• structure in the data - if there is a lack of independence in the data this can lead to overdispersion.
Fitting a random effect (see the section on mixed effect models) can sometimes account for this.

• a mis-specified model - perhaps your assumed distriubution is not a good one.

The DHARMa package provides an example of what overdispersion would look like.
library (lme4)

## Loading required package: Matrix
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testData = createData(sampleSize = 500, overdispersion = 2, family = poisson())
fittedModel <- glmer(observedResponse ~ Environment1 + (1|group) , family = "poisson", data = testData)

simulationOutput <- simulateResiduals(fittedModel = fittedModel)
plot(simulationOutput)
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DHARMa residual diagnostics

Note
that instead of a uniform distribution of simulated residuals they are clustered around zero.

Here is an example of under-dispersion where we have too few residuals around the tail - too many around
the value of 0.5
testData = createData(sampleSize = 500, intercept=0, fixedEffects = 2, overdispersion = 0, family = poisson(), roundPoissonVariance = 0.001, randomEffectVariance = 0)
fittedModel <- glmer(observedResponse ~ Environment1 + (1|group) , family = "poisson", data = testData)

## boundary (singular) fit: see ?isSingular
summary(fittedModel)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: observedResponse ~ Environment1 + (1 | group)
## Data: testData
##
## AIC BIC logLik deviance df.resid
## 963.2 975.9 -478.6 957.2 497
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.6051 -0.3621 -0.1020 0.2040 1.0354
##
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## Random effects:
## Groups Name Variance Std.Dev.
## group (Intercept) 0 0
## Number of obs: 500, groups: group, 10
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.20609 0.06064 -3.399 0.000677 ***
## Environment1 2.29772 0.08628 26.632 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Environmnt1 -0.819
## convergence code: 0
## boundary (singular) fit: see ?isSingular
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
plot(simulationOutput)
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DHARMa residual diagnostics

As far as I can tell this DHARMa package is great for testing these assumptions.

There are, however, some simpler ways to test for over-dispersion. As a start, we can estimate the amount of
dispersion in a model by comparing the residual df to the residual deviance in a GLiM. We expect that these
ought to be similar. NOTE that this is just an estimate.
summary (hatch.glm)

##
## Call:
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## glm(formula = hatch ~ eggcode + LayDay + post.eggmass, family = binomial,
## data = egg2)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3011 -1.1999 0.6390 0.8161 1.3262
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.847376 0.507975 -3.637 0.000276 ***
## eggcodeM -0.509826 0.150804 -3.381 0.000723 ***
## LayDay 0.012742 0.002738 4.654 3.25e-06 ***
## post.eggmass 3.992286 1.105930 3.610 0.000306 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1455.3 on 1246 degrees of freedom
## Residual deviance: 1375.4 on 1243 degrees of freedom
## AIC: 1383.4
##
## Number of Fisher Scoring iterations: 4

Note the similarity between the residual deviance and the residual df.

When you are looking at the relationship between the residual deviance and the residual df that this is only a
reliable measure of overdispersion if n*p (for binomial) is large
length(egg2$hatch)*mean(egg2$hatch)

## [1] 910

This is large

We could still get a measure of the dispersion parameter by using the quasi family
hatch.glm4<-glm(hatch~eggcode+LayDay+I(LayDay^2)+post.eggmass, family=quasibinomial, data=egg2, na.action=na.omit)

summary (hatch.glm4)

##
## Call:
## glm(formula = hatch ~ eggcode + LayDay + I(LayDay^2) + post.eggmass,
## family = quasibinomial, data = egg2, na.action = na.omit)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2910 -1.0873 0.5929 0.7952 1.5763
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.982e+00 1.513e+00 -6.597 6.18e-11 ***
## eggcodeM -5.332e-01 1.524e-01 -3.498 0.000485 ***
## LayDay 1.528e-01 2.452e-02 6.231 6.33e-10 ***
## I(LayDay^2) -5.717e-04 9.882e-05 -5.785 9.15e-09 ***
## post.eggmass 3.945e+00 1.096e+00 3.600 0.000331 ***

14



## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.9952764)
##
## Null deviance: 1455.3 on 1246 degrees of freedom
## Residual deviance: 1343.0 on 1242 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 4

Note that now the dispersion parameter is estimated rather than assuming that it is 1. Notice that the
estimated parameter is very close to one.

What would a very poorly fit model look like (i.e. the wrong link)?
hatch.poor<-glm(post.eggmass~eggcode+I(LayDay^2), family=quasibinomial, data=egg2, na.action=na.omit)

In this case the response variable is normally distributed but we have specified the quasibinomial family
summary (hatch.poor)

##
## Call:
## glm(formula = post.eggmass ~ eggcode + I(LayDay^2), family = quasibinomial,
## data = egg2, na.action = na.omit)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.42469 -0.08084 -0.00374 0.07454 1.05018
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.102e-01 1.952e-02 -21.015 <2e-16 ***
## eggcodeM -2.967e-01 1.538e-02 -19.292 <2e-16 ***
## I(LayDay^2) 9.693e-06 1.163e-06 8.333 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.01680608)
##
## Null deviance: 28.533 on 1246 degrees of freedom
## Residual deviance: 21.242 on 1244 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 3

Notice that the model is highly under-dispersed. This is evident from the residual deviance and df as well as
the estimated dispersion parameter.

Nonlinearities

We should also look for nonlinearities
hatch.gam<-gam(hatch~eggcode+s(LayDay)+s(post.eggmass), family=binomial, data=egg2, na.action=na.omit)
anova (hatch.gam)
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## Anova for Nonparametric Effects
## Npar Df Npar Chisq P(Chi)
## (Intercept)
## eggcode
## s(LayDay) 3 54.948 7.045e-12 ***
## s(post.eggmass) 3 8.483 0.037 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There seems to be strong nonlinear effects for layDay and maybe post-egg mass. We will try and correct
LayDay first and then see if that helps the relationship for posteggmass. Let’s see what the relationship looks
like.

The plot.Gam function is good for plotting generalized additive models. The value on the y axis is the
response variable corrected for other terms in the model (this is a partial plot).
plot.Gam(hatch.gam, se=T, residuals = T)

## Warning in gplot.default(x = c("M", "M", "M", "M", "M", "M", "M", "M", "M", :
## The "x" component of "partial for eggcode" has class "character"; no gplot()
## methods available
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Note that we seem to have some sort of quadratic effect of LayDate and maybe an outlier for post.eggmass. I
would normally go back and double-check that value but I remember that egg. It is not a mistake. We might
want to try and run the model without this point just to make sure that our conclusions don’t depend on
that data point. The Cook’s distance values suggest that the results do not, but we could check.

So let’s fit a quadratic effect for LayDay
hatch.glm2<-glm(hatch~eggcode+LayDay+I(LayDay^2)+post.eggmass, family=binomial, data=egg2, na.action=na.omit)
summary (hatch.glm2)

##
## Call:
## glm(formula = hatch ~ eggcode + LayDay + I(LayDay^2) + post.eggmass,
## family = binomial, data = egg2, na.action = na.omit)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2910 -1.0873 0.5929 0.7952 1.5763
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.982e+00 1.517e+00 -6.582 4.65e-11 ***
## eggcodeM -5.332e-01 1.528e-01 -3.490 0.000483 ***
## LayDay 1.528e-01 2.458e-02 6.216 5.09e-10 ***
## I(LayDay^2) -5.717e-04 9.905e-05 -5.772 7.85e-09 ***
## post.eggmass 3.945e+00 1.098e+00 3.591 0.000329 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1455.3 on 1246 degrees of freedom
## Residual deviance: 1343.0 on 1242 degrees of freedom
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## AIC: 1353
##
## Number of Fisher Scoring iterations: 4

Do any non-linearities remain after we consider the quadratic effect?
hatch.gam2<-gam(hatch~eggcode+s(LayDay)+I(LayDay^2)+s(post.eggmass), family=binomial, data=egg2, na.action=na.omit)
anova (hatch.gam2)

## Anova for Nonparametric Effects
## Npar Df Npar Chisq P(Chi)
## (Intercept)
## eggcode
## s(LayDay) 3 24.4535 2.009e-05 ***
## I(LayDay^2)
## s(post.eggmass) 3 8.8104 0.03192 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot.Gam(hatch.gam2, se=T, residuals = T)

## Warning in gplot.default(x = c("M", "M", "M", "M", "M", "M", "M", "M", "M", :
## The "x" component of "partial for eggcode" has class "character"; no gplot()
## methods available
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plot(hatch.glm2)
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It seems like the nonlinearity for posteggmass is driven by that one point. We will exclude it and rerun the
model.
hatch.glm3<-glm(hatch~eggcode+LayDay+I(LayDay^2)+post.eggmass, family=binomial, data=egg2, na.action=na.omit, subset=-1067)

We can compare the results of the two models
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summary (hatch.glm2)

##
## Call:
## glm(formula = hatch ~ eggcode + LayDay + I(LayDay^2) + post.eggmass,
## family = binomial, data = egg2, na.action = na.omit)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2910 -1.0873 0.5929 0.7952 1.5763
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.982e+00 1.517e+00 -6.582 4.65e-11 ***
## eggcodeM -5.332e-01 1.528e-01 -3.490 0.000483 ***
## LayDay 1.528e-01 2.458e-02 6.216 5.09e-10 ***
## I(LayDay^2) -5.717e-04 9.905e-05 -5.772 7.85e-09 ***
## post.eggmass 3.945e+00 1.098e+00 3.591 0.000329 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1455.3 on 1246 degrees of freedom
## Residual deviance: 1343.0 on 1242 degrees of freedom
## AIC: 1353
##
## Number of Fisher Scoring iterations: 4
summary (hatch.glm3)

##
## Call:
## glm(formula = hatch ~ eggcode + LayDay + I(LayDay^2) + post.eggmass,
## family = binomial, data = egg2, subset = -1067, na.action = na.omit)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3133 -1.0799 0.5908 0.7950 1.5780
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.014e+01 1.521e+00 -6.665 2.65e-11 ***
## eggcodeM -5.073e-01 1.533e-01 -3.309 0.000936 ***
## LayDay 1.534e-01 2.463e-02 6.230 4.68e-10 ***
## I(LayDay^2) -5.741e-04 9.924e-05 -5.785 7.27e-09 ***
## post.eggmass 4.227e+00 1.110e+00 3.809 0.000140 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1452.6 on 1245 degrees of freedom
## Residual deviance: 1338.5 on 1241 degrees of freedom
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## AIC: 1348.5
##
## Number of Fisher Scoring iterations: 4

There is very little change in the parameters of the model by excluding that point.

Probit Model

Recall our original model:
hatch.glm<-glm(hatch~eggcode+LayDay+post.eggmass, data=egg2, family=binomial)

In this case we are using the default link function for the binomial family. This is the “logit” function which
converts probabilities into log odds = log(prop/(1-prop)). An equivalent model would be:
hatch.glm<-glm(hatch~eggcode+LayDay+post.eggmass, data=egg2, family=binomial(logit))

We could also specify
hatch.glm<-glm(hatch~eggcode+LayDay+post.eggmass, data=egg2, family=binomial(probit))

I am less familiar with the probit link but apparently these two links will often give similar results except
when there are many very high or very low probabilities in which case probit is preferred.
hatch.glm<-glm(hatch~eggcode+LayDay+post.eggmass, data=egg2, family=binomial(logit))
summary (hatch.glm)

##
## Call:
## glm(formula = hatch ~ eggcode + LayDay + post.eggmass, family = binomial(logit),
## data = egg2)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3011 -1.1999 0.6390 0.8161 1.3262
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.847376 0.507975 -3.637 0.000276 ***
## eggcodeM -0.509826 0.150804 -3.381 0.000723 ***
## LayDay 0.012742 0.002738 4.654 3.25e-06 ***
## post.eggmass 3.992286 1.105930 3.610 0.000306 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1455.3 on 1246 degrees of freedom
## Residual deviance: 1375.4 on 1243 degrees of freedom
## AIC: 1383.4
##
## Number of Fisher Scoring iterations: 4
anova (hatch.glm, test="Chi")

## Analysis of Deviance Table
##
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## Model: binomial, link: logit
##
## Response: hatch
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 1246 1455.3
## eggcode 1 32.635 1245 1422.6 1.112e-08 ***
## LayDay 1 33.547 1244 1389.1 6.955e-09 ***
## post.eggmass 1 13.635 1243 1375.5 0.000222 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that this is the same approach as we used for an lm. The only difference is that now we are dealing
with an F test. Note that the anova output assesses (in sequence) whether the addition of the next term
significantly improves the fit of the model relative to the simpler model in which that term is not yet included.
We can show the sequence of these tests as:
temp1<-glm(hatch~1, data=egg2, family=binomial(logit))
temp2<-glm(hatch~eggcode, data=egg2, family=binomial(logit))
temp3<-glm(hatch~eggcode+LayDay, data=egg2, family=binomial(logit))
temp4<-glm(hatch~eggcode+LayDay+post.eggmass, data=egg2, family=binomial(logit))

anova (hatch.glm, test="Chi")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: hatch
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 1246 1455.3
## eggcode 1 32.635 1245 1422.6 1.112e-08 ***
## LayDay 1 33.547 1244 1389.1 6.955e-09 ***
## post.eggmass 1 13.635 1243 1375.5 0.000222 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova (temp1, temp2, temp3, temp4, test="Chi")

## Analysis of Deviance Table
##
## Model 1: hatch ~ 1
## Model 2: hatch ~ eggcode
## Model 3: hatch ~ eggcode + LayDay
## Model 4: hatch ~ eggcode + LayDay + post.eggmass
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 1246 1455.3
## 2 1245 1422.6 1 32.635 1.112e-08 ***
## 3 1244 1389.1 1 33.547 6.955e-09 ***
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## 4 1243 1375.5 1 13.635 0.000222 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We wouldn’t normally do this. Normally you would use the anova output to assess the significance of the
terms in your model with the understanding that this is based on a Type Iish philosophy (i.e. order matters)

Note the reminder that terms are ordered from first to last.

Interpreting parameters in a GLiM

We will start simple
hatch.simple<-glm(hatch~post.eggmass, family=binomial, data=egg2)

summary (hatch.simple)

##
## Call:
## glm(formula = hatch ~ post.eggmass, family = binomial, data = egg2)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.279 -1.304 0.682 0.821 1.248
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.6059 0.3808 -4.217 2.48e-05 ***
## post.eggmass 6.5468 0.9623 6.803 1.02e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1455.3 on 1246 degrees of freedom
## Residual deviance: 1405.1 on 1245 degrees of freedom
## AIC: 1409.1
##
## Number of Fisher Scoring iterations: 4

When you get a predicted value remember that it is on the log-odds scale because of the logit link function.

So if we wanted to calculate the predicted probability of survival for an egg that was 0.2g we would first get
the predicted value on the log-odds scale.
-1.6059+6.5468*0.2

## [1] -0.29654

This is on the log-odds scale. We can then use a function in the boot package to back-transform this value.
Note that the two colons just specifies that the function inv.logit is located within the boot package. This
notation is not needed, but it can help clarify situations where there are two functions in different packages
with the same name. It also helps to make it more clear to you that this is why I needed to load the boot
package at the start of this document.
boot::inv.logit(-0.29654)
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## [1] 0.4264035

We can check this against our calculation
log(0.426/0.564)

## [1] -0.2806149

Therefore there is about a 43% chance that an egg that is 0.2g will survive until hatching.

We can also plot the predicted values against egg mass
plot(egg2$post.eggmass, predict(hatch.simple, type="link"))
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Note that this line has the slope and intercept that is presented in the model summary. However the logit
link function means that these predicted values are not on the original scale that they were measured on.

We can instead get the predicted plot on the original raw scale by specifying type=“response”.
plot(egg2$post.eggmass, predict(hatch.simple, type="response"))

26



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

egg2$post.eggmass

pr
ed

ic
t(

ha
tc

h.
si

m
pl

e,
 ty

pe
 =

 "
re

sp
on

se
")

Residuals

With GLiM’s there are also 4 different types of residuals
hist(resid(hatch.simple, type="working"))

Histogram of resid(hatch.simple, type = "working")
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hist(resid(hatch.simple, type="response"))

Histogram of resid(hatch.simple, type = "response")

resid(hatch.simple, type = "response")
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hist(resid(hatch.simple, type="pearson"))

Histogram of resid(hatch.simple, type = "pearson")
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hist(resid(hatch.simple, type="deviance"))

Histogram of resid(hatch.simple, type = "deviance")
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Deviance residuals are the best for diagnostic plots.
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