
Data Import and Manipulations

Andrew McAdam

2021-09-30

Contents
Multiple Vectors and Data Frames 1

Referencing Elements in a Data Frame 2

Importing Data from Excel 3

Subsets 7

Summarizing By Groups 9

Sourcing Code 10

Basic Graphics 10
ggplot . 16

Multiple Vectors and Data Frames

So far we have been dealing mostly with variables (e.g. “x” and “answer”) and vectors (e.g., “one.to.100”). R
can also handle matrices just fine and these are important for many calculations but we won’t be dealing
with them too much here. Most often you will be dealing with data in data frames. These are a list of vectors
(variables) of the same length that are linked together across rows (replicates). That is, the data in the
first row of each vector is logically linked to the first row of all other vectors because all of these data were
collected from the same forest stand, plant, survey respondent or sediment core. Some of this terminology
might be new to you but this is the way you are used to seeing data presented (hopefully!) in spreadsheet
programs like Excel.

We can create a new empty data frame using
temp<-data.frame()
temp

data frame with 0 columns and 0 rows

This is a start but it is pretty boring for now since we don’t have any data in this data frame. Let’s make
something a little fancier, which is a data frame with three variables (response, pred1 and pred2). For now
we will simply define response to be the numbers 1:10, pred1 will be 2:11 and pred2 will be 3:12. Note that
all three variables MUST be the same length
temp2 <- data.frame(response=1:10,pred1=2:11,pred2=3:12)
temp2

1

response pred1 pred2
1 1 2 3
2 2 3 4
3 3 4 5
4 4 5 6
5 5 6 7
6 6 7 8
7 7 8 9
8 8 9 10
9 9 10 11
10 10 11 12

Note that I have specified the three columns separated by commas and each column is a vector that is defined
to be a sequence of 10 numbers.

Referencing Elements in a Data Frame

Note that just like with vectors we can refer to any particular cell in a data frame by referencing its row and
column. We can do this to ask R what the value of a cell is or to change a value of a cell. So for example
we can ask R what the value in our new data frame called “temp2” is in the 4th row and the first column
(i.e. “response”)
temp2[4,1]

[1] 4

The notation is [row, column] We can change specific values in a data frame using the assignment action:
temp2[4,1]<-45
temp2

response pred1 pred2
1 1 2 3
2 2 3 4
3 3 4 5
4 45 5 6
5 5 6 7
6 6 7 8
7 7 8 9
8 8 9 10
9 9 10 11
10 10 11 12

We can also ask R for more than one cell at a time
temp2[1:5, 1]

[1] 1 2 3 45 5

This can be read as. . . “R please return the values in rows one through 5 and the first column only”.

If we don’t specify a row or column we get them all
temp2[1:5,]

response pred1 pred2
1 1 2 3
2 2 3 4

2

3 3 4 5
4 45 5 6
5 5 6 7

Remember that we still need to include the column component, but we just leave it blank. We get an error if
we use. . . temp2[1:5]

Error in [.data.frame(temp2, 1:5) : undefined columns selected

This would work for a vector though because it only has one dimension
one.to.ten <- 1:10
one.to.ten[1:5]

[1] 1 2 3 4 5

So you can do a lot with data manipulation using R that we wont get into in this class, but you are unlikely
to enter data in R. Instead you will need to import a raw data file. R isn’t much fun if you can’t get your
data imported!

Importing Data from Excel

We will start by importing a csv file that is located in the data folder in CourseLink. Open this file and
save it to your working directory. If you have done this you do not need to specify the entire path name. I
would recommend that you keep your folders organized and include a subfolder called ‘data’ in your working
directory.
part.temp<-read.table("data/PartD2.csv", sep=",", header=T)

Note that there was no error message!!!

Note that I have included the exact file name (case sensitive) with the proper extension.

I have indicated that the file has a header (header=T). This is because I have variable names stored in the
first row of the datafile. R needs to know if these are variable names or actual data!

Finally I have indicated that the file is a comma separated file (sep=’‘,”). This is what I always use.

Note that there is a similar function that is not generic to all data types, but is instead specific to .csv files.
It is called read.csv. This function will tend to have fewer errors when importing data. In this case you don’t
need to specify that the separator is “,”.
part.temp<-read.csv("data/PartD2.csv", header=T)

As before we can view a data file by simply typing its name
part.temp[1:5,]

GRID BR YR AGE BY LN Dam FOOD LSIZE Julian conestm1
1 FL 1 1989 4 1985 1 3 0 2 106 3.160903
2 FL 3 1989 2 1987 1 5 0 3 123 3.160903
3 LL 3 1989 3 1986 1 6 0 2 119 3.160903
4 FL 4 1989 3 1986 1 12 0 2 116 3.160903
5 FL 1 1989 6 1983 1 14 0 2 98 3.160903

The “head” command lists the first few rows of a datafile.
head(part.temp)

GRID BR YR AGE BY LN Dam FOOD LSIZE Julian conestm1
1 FL 1 1989 4 1985 1 3 0 2 106 3.160903

3

2 FL 3 1989 2 1987 1 5 0 3 123 3.160903
3 LL 3 1989 3 1986 1 6 0 2 119 3.160903
4 FL 4 1989 3 1986 1 12 0 2 116 3.160903
5 FL 1 1989 6 1983 1 14 0 2 98 3.160903
6 SU 1 1989 4 1985 1 21 0 3 107 3.160903

IMPORTANT: I have provided you with a copy of the PartD2.csv file so that you can follow along and do
exactly what I do in class. As a general rule these are data (sometimes unpublished) that belong to me or my
colleagues. You are free to play around with the data and to try things out with these data in R. You are not
free to publish results with these data without talking to me first and you are not free to share these data
with anyone outside this class. If someone else wants a copy of the data have them contact me directly.

There are a few other functions that are important for summarizing data. First we can recall all of the
variable names in the data file using
names (part.temp)

[1] "GRID" "BR" "YR" "AGE" "BY" "LN"
[7] "Dam" "FOOD" "LSIZE" "Julian" "conestm1"

We can get the number of variables in the data file using
length(part.temp)

[1] 11

Note this IS NOT the number of observations (or rows) in the data file. It is the number of variables within
the data frame. If we want the number of rows we need to refer not to the whole dataframe but to a specific
variable within the dataframe using the $ symbol.
length(part.temp$GRID)

[1] 1422

Or we can get both using
dim(part.temp)

[1] 1422 11

So there are 1422 rows and 11 columns in the data file

An extremely useful function summarizes the data in the data file
summary (part.temp)

GRID BR YR AGE
Length:1422 Min. :0.000 Min. :1989 Min. :1.000
Class :character 1st Qu.:1.000 1st Qu.:1994 1st Qu.:2.000
Mode :character Median :1.000 Median :1997 Median :3.000
Mean :1.291 Mean :1997 Mean :2.943
3rd Qu.:1.000 3rd Qu.:2000 3rd Qu.:4.000
Max. :7.000 Max. :2004 Max. :8.000
NA's :42
BY LN Dam FOOD
Min. :1983 Min. :0.0000 Min. : 3.0 Min. : 0.000
1st Qu.:1991 1st Qu.:1.0000 1st Qu.:221.0 1st Qu.: 0.000
Median :1994 Median :1.0000 Median :392.0 Median : 0.000
Mean :1994 Mean :0.9937 Mean :392.2 Mean : 0.447
3rd Qu.:1997 3rd Qu.:1.0000 3rd Qu.:557.8 3rd Qu.: 0.000
Max. :2003 Max. :5.0000 Max. :782.0 Max. :10.000

4

NA's :176
LSIZE Julian conestm1
Min. :0.000 Min. : 57.00 Min. :0.000
1st Qu.:2.000 1st Qu.: 99.25 1st Qu.:1.402
Median :3.000 Median :116.00 Median :2.759
Mean :2.734 Mean :117.96 Mean :2.677
3rd Qu.:3.000 3rd Qu.:134.00 3rd Qu.:3.748
Max. :7.000 Max. :203.00 Max. :5.327
NA's :11

You will use this one a lot!!!

Note that there is different notation used to summarize different variables. This is because when we imported
the data R automatically assumed that any text variable (i.e. GRID) was a factor and that numerical variables
(e.g., Julian) is a continuous variable. Sometimes this is correct and sometimes I have just used numbers to
refer to factors when I could have just as easily used a letter or word (e.g., BR, LN, FOOD). We can change
these into factors using. . .
part.temp$LN<-factor(part.temp$LN)
part.temp$FOOD<-factor(part.temp$FOOD)
part.temp$Dam<-factor(part.temp$Dam)
part.temp$BR<-factor(part.temp$BR)

See how things look quite different now.
summary (part.temp)

GRID BR YR AGE
Length:1422 1 :1211 Min. :1989 Min. :1.000
Class :character 2 : 85 1st Qu.:1994 1st Qu.:2.000
Mode :character 4 : 75 Median :1997 Median :3.000
3 : 27 Mean :1997 Mean :2.943
0 : 12 3rd Qu.:2000 3rd Qu.:4.000
6 : 6 Max. :2004 Max. :8.000
(Other): 6 NA's :42
BY LN Dam FOOD LSIZE
Min. :1983 0: 13 166 : 8 0 :1080 Min. :0.000
1st Qu.:1991 1:1408 167 : 7 2 : 102 1st Qu.:2.000
Median :1994 5: 1 485 : 7 3 : 19 Median :3.000
Mean :1994 9 : 6 4 : 19 Mean :2.734
3rd Qu.:1997 201 : 6 10 : 16 3rd Qu.:3.000
Max. :2003 218 : 6 (Other): 10 Max. :7.000
(Other):1382 NA's : 176 NA's :11
Julian conestm1
Min. : 57.00 Min. :0.000
1st Qu.: 99.25 1st Qu.:1.402
Median :116.00 Median :2.759
Mean :117.96 Mean :2.677
3rd Qu.:134.00 3rd Qu.:3.748
Max. :203.00 Max. :5.327
##

For some variables it isn’t entirely clear whether they should be considered continuous or as a factor (e.g.,
YR, AGE). So we might want to create a new variable that is a factor but which leaves the original variable
intact.

5

part.temp$YRF<-factor(part.temp$YR)
part.temp$AGEF<-factor(part.temp$AGE)
summary (part.temp)

GRID BR YR AGE
Length:1422 1 :1211 Min. :1989 Min. :1.000
Class :character 2 : 85 1st Qu.:1994 1st Qu.:2.000
Mode :character 4 : 75 Median :1997 Median :3.000
3 : 27 Mean :1997 Mean :2.943
0 : 12 3rd Qu.:2000 3rd Qu.:4.000
6 : 6 Max. :2004 Max. :8.000
(Other): 6 NA's :42
BY LN Dam FOOD LSIZE
Min. :1983 0: 13 166 : 8 0 :1080 Min. :0.000
1st Qu.:1991 1:1408 167 : 7 2 : 102 1st Qu.:2.000
Median :1994 5: 1 485 : 7 3 : 19 Median :3.000
Mean :1994 9 : 6 4 : 19 Mean :2.734
3rd Qu.:1997 201 : 6 10 : 16 3rd Qu.:3.000
Max. :2003 218 : 6 (Other): 10 Max. :7.000
(Other):1382 NA's : 176 NA's :11
Julian conestm1 YRF AGEF
Min. : 57.00 Min. :0.000 1999 :181 2 :371
1st Qu.: 99.25 1st Qu.:1.402 1996 :129 3 :337
Median :116.00 Median :2.759 1994 :115 1 :233
Mean :117.96 Mean :2.677 1995 :111 4 :231
3rd Qu.:134.00 3rd Qu.:3.748 1998 : 98 5 :121
Max. :203.00 Max. :5.327 1992 : 97 (Other): 87
(Other):691 NA's : 42

Note that R interprets missing data as NA

We can ask R about missing data using
is.na(part.temp[561, 4])

[1] FALSE
is.na(part.temp[562, 4])

[1] TRUE

We can also specify the negative to ask whether the value is NOT NA
!is.na(part.temp[562, 4])

[1] FALSE

Note that missing data (NA) can cause some functions to not work unless we make some special consideration
for them
std<-function(x){
#This function takes a vector x and standardizes the values within x to a mean of
#zero and a sd of one
(x-mean(x))/sd(x)
}

summary(std(part.temp$AGE))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

6

NA NA NA NaN NA NA 1422

We can improve our function so that it doesn’t return NA when any of the data are missing. Instead we can
ask it to simply omit those observations from the calculation
std<-function(x){

#This function takes a vector x and standardizes the values within x to a mean of
#zero and a sd of

(x-mean(x, na.rm=T))/sd(x, na.rm=T)
}

summary(std(part.temp$AGE))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-1.32260 -0.64207 0.03846 0.00000 0.71900 3.44113 42

Subsets

We often want to deal with only a subset of a dataset. For example we might want to look at only the
parturition dates before March 1 (Julian date of 60)
part.temp$Julian[part.temp$Julian<60]

[1] 57

Wow there is only one! What if we wanted to know what year this was in?
part.temp$YR[part.temp$Julian<60]

[1] 1999

Neat! We can also get sophisticated and specify more that one criterion at once
part.temp$Julian[part.temp$Julian<90&part.temp$Julian>80]

[1] 81 87 81 87 84 85 83 87 89 88 89 87 82 81 89 88 84 85 86 85 85 86 85 83 89
[26] 84 87 84 88 89 86 81 83 83 86 84 86 87 89 87 83 87 84 84 85 83 84 83 87 82
[51] 88 88 87 88 86 85 89 86 89 86 85 86 87 88 87 88 82 81 89 87 87 88 86 86 86
[76] 84 81 88 86 87 84 89 89 89 85 89 87 85 85 81 87 88 86 88 89 86 85 84 84 86
[101] 86 88 88 87 89 89 89 87 84 86 84 87 88 87

Some of the other useful logical terms are , <, ==, <=, & (and), ! (not), != (not equal to), | (or)

Here we have used relational operators within indexing to subset our data, but we can also use the subset
command
summary (subset(part.temp, part.temp$YR==1993))

GRID BR YR AGE BY
Length:73 1 :54 Min. :1993 Min. :1.000 Min. :1986
Class :character 4 : 9 1st Qu.:1993 1st Qu.:1.000 1st Qu.:1989
Mode :character 2 : 7 Median :1993 Median :2.000 Median :1991
3 : 3 Mean :1993 Mean :2.658 Mean :1990
0 : 0 3rd Qu.:1993 3rd Qu.:4.000 3rd Qu.:1992
5 : 0 Max. :1993 Max. :7.000 Max. :1992
(Other): 0
LN Dam FOOD LSIZE Julian
0: 0 28 : 1 0 :73 Min. :0.000 Min. : 87.0

7

1:73 47 : 1 2 : 0 1st Qu.:2.000 1st Qu.: 99.0
5: 0 65 : 1 3 : 0 Median :3.000 Median :105.0
72 : 1 4 : 0 Mean :2.849 Mean :115.5
81 : 1 5 : 0 3rd Qu.:3.000 3rd Qu.:122.0
100 : 1 6 : 0 Max. :5.000 Max. :193.0
(Other):67 (Other): 0
conestm1 YRF AGEF
Min. :3.454 1993 :73 2 :26
1st Qu.:3.454 1989 : 0 1 :20
Median :3.454 1990 : 0 5 : 8
Mean :3.454 1991 : 0 3 : 7
3rd Qu.:3.454 1992 : 0 4 : 7
Max. :3.454 1994 : 0 7 : 3
(Other): 0 (Other): 2

So this a summary of the part.temp data file, but only for those values that were in year=1993.

It is important to note that when you refer to values of a factor and not a continuous variable you need to
specify the text code in quotes. This tells R that you are referring to a particular text string value for that
variable and not some other object. So for example, if I wanted to restrict the summary to only the GRID
called SU, I need to put SU in quotes.

If I type. . . summary (subset(part.temp, part.temp$GRID==SU))

I will get an error. . . Error in eval(expr, envir, enclos) : object ‘SU’ not found
summary (subset(part.temp, part.temp$GRID=="SU"))

GRID BR YR AGE BY
Length:477 1 :390 Min. :1989 Min. :1.000 Min. :1985
Class :character 4 : 37 1st Qu.:1994 1st Qu.:2.000 1st Qu.:1991
Mode :character 2 : 25 Median :1998 Median :3.000 Median :1995
3 : 13 Mean :1997 Mean :3.052 Mean :1994
0 : 8 3rd Qu.:2000 3rd Qu.:4.000 3rd Qu.:1997
6 : 2 Max. :2004 Max. :8.000 Max. :2003
(Other): 2
LN Dam FOOD LSIZE Julian
0: 9 9 : 6 0 :351 Min. :0.000 Min. : 57.0
1:468 353 : 6 2 : 25 1st Qu.:2.000 1st Qu.:100.0
5: 0 366 : 6 3 : 4 Median :3.000 Median :119.0
683 : 6 4 : 0 Mean :2.809 Mean :119.5
47 : 5 5 : 0 3rd Qu.:3.000 3rd Qu.:135.0
128 : 5 (Other): 0 Max. :6.000 Max. :198.0
(Other):443 NA's : 97 NA's :7
conestm1 YRF AGEF
Min. :0.000 1999 : 63 3 :110
1st Qu.:1.402 1998 : 45 2 :107
Median :2.337 2001 : 41 1 : 89
Mean :2.564 1992 : 34 4 : 82
3rd Qu.:3.748 1994 : 30 5 : 50
Max. :5.327 1997 : 30 6 : 29
(Other):234 (Other): 10

This is because we could include a variable in there rather than a text string
variable<-"SU"
summary (subset(part.temp, part.temp$GRID==variable))

8

GRID BR YR AGE BY
Length:477 1 :390 Min. :1989 Min. :1.000 Min. :1985
Class :character 4 : 37 1st Qu.:1994 1st Qu.:2.000 1st Qu.:1991
Mode :character 2 : 25 Median :1998 Median :3.000 Median :1995
3 : 13 Mean :1997 Mean :3.052 Mean :1994
0 : 8 3rd Qu.:2000 3rd Qu.:4.000 3rd Qu.:1997
6 : 2 Max. :2004 Max. :8.000 Max. :2003
(Other): 2
LN Dam FOOD LSIZE Julian
0: 9 9 : 6 0 :351 Min. :0.000 Min. : 57.0
1:468 353 : 6 2 : 25 1st Qu.:2.000 1st Qu.:100.0
5: 0 366 : 6 3 : 4 Median :3.000 Median :119.0
683 : 6 4 : 0 Mean :2.809 Mean :119.5
47 : 5 5 : 0 3rd Qu.:3.000 3rd Qu.:135.0
128 : 5 (Other): 0 Max. :6.000 Max. :198.0
(Other):443 NA's : 97 NA's :7
conestm1 YRF AGEF
Min. :0.000 1999 : 63 3 :110
1st Qu.:1.402 1998 : 45 2 :107
Median :2.337 2001 : 41 1 : 89
Mean :2.564 1992 : 34 4 : 82
3rd Qu.:3.748 1994 : 30 5 : 50
Max. :5.327 1997 : 30 6 : 29
(Other):234 (Other): 10

I hope you can see that the reason you need the quotes is because if we had a variable in the workspace called
SU and a value for the factor GRID that was SU then it could get quite confusing if we didn’t specify which
one we were referring to.

We can also get quite fancy in our subsetting
subset1<-part.temp$GRID=="SU"|part.temp$GRID=="KL"&part.temp$YR==1993
summary (subset(part.temp$Julian, subset1))

Min. 1st Qu. Median Mean 3rd Qu. Max.
57.0 100.0 118.0 119.5 135.0 198.0

Note that this is different from
subset2<-(part.temp$GRID=="SU"|part.temp$GRID=="KL")&part.temp$YR==1993
summary (subset(part.temp$Julian,subset2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
88.0 98.0 105.5 116.4 121.2 193.0

Note how I have used the brackets to control the subsetting. In the first example I was saying that I want
either records of (SU) OR records that are both (KL and 1993). In the second example I am asking for
records that are (either SU or KL) and (1993). You need to think very carefully about what you are doing
with these complex subsets!

Summarizing By Groups

We can also summarize data by levels of a factor using the tapply command. For example we might be
interested in the average breeding date of females in each year

9

tapply(part.temp$Julian, part.temp$YRF, mean)

1989 1990 1991 1992 1993 1994 1995 1996
103.30667 137.42500 128.08333 145.23711 115.46575 95.74783 152.09910 98.62016
1997 1998 1999 2000 2001 2002 2003 2004
117.82105 120.51020 95.19890 120.06667 125.89873 125.71186 125.21569 128.74074

Or by age
tapply(part.temp$Julian, part.temp$AGEF, mean)

1 2 3 4 5 6 7 8
124.3176 119.6469 116.0801 115.2511 120.2314 113.0154 117.5263 123.0000

Sourcing Code

Remember that when we imported the PartD2.csv file we had to convert some of the variables to factors and
then create some new variables before we were ready to do interesting things with the data. If you save your
workspace then you don’t need to keep importing your data into R each time you restart the program. But if
you do end up importing your data file a lot it would become a bit of a pain to have to retype all that code.
So instead you can write a simple source file that you can simply refer to when you need this to be done.
With this approach, you do not rely on saving your workspace every time you close your R session. You would
then start each session with a clean working directory, and call your script file with the “source” command.

For an exercise, extract all the data manipulation commands from this document that we needed to reach our
final part.temp object, put these in one script file, name this file for instance “part.temp.import.R”, close R
without saving your workspace, open R again without loading a workspace. Check that you have no objects
in your workspace with

ls()

Then load your just created script file with:

source(“part.temp.import.R”)

Basic Graphics

The final thing that I want to do is to provide a brief overview of graphics. I will try and return to graphics
using R as we work our way through the course. The graphics in R are very powerful but they can be a little
daunting at first because you have the ability to change just about every aspect of the graphics.

Basics graphics in R come from the plot function. To start with we will plot the relationship between food
abundance (conestm1) and parturition date (Julian) by individual female red squirrels. The notation for the
plot command is to first provide the variable for the X axis and then the variable for the Y axis.
plot(part.temp$conestm1, part.temp$Julian)

10

0 1 2 3 4 5

10
0

15
0

20
0

part.temp$conestm1

pa
rt

.te
m

p$
Ju

lia
n

This is the simplest type of plot, but we can pretty it up a bit by specifying some of the parameters rather
than accepting the defaults

First of all we probably want to rename our axis labels since they don’t look very good right now
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abundance",
ylab="Parturition date")

0 1 2 3 4 5

10
0

15
0

20
0

Food abundance

P
ar

tu
rit

io
n

da
te

Those labels are also a bit small so we can make then bigger
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abundance",
ylab="Parturition date", cex.lab=2)

11

0 1 2 3 4 5

10
0

15
0

20
0

Food abundance

P
ar

tu
rit

io
n

da
te

Maybe that’s a bit too big
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abundance",
ylab="Parturition date", cex.lab=1.5)

0 1 2 3 4 5

10
0

15
0

20
0

Food abundance

P
ar

tu
rit

io
n

da
te

Note that the cex stands for character expansion and 2 means 2x as big as the default

We can also change the size of the axes
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abundance",
ylab="Parturition date", cex.lab=1.5, cex.axis=1.2)

12

0 1 2 3 4 5

10
0

15
0

20
0

Food abundance

P
ar

tu
rit

io
n

da
te

We might want to change the scale of the y axis
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abundance",
ylab="Parturition date", cex.lab=1.5, cex.axis=1.2, ylim=c(0, 365))

0 1 2 3 4 5

0
10

0
20

0
30

0

Food abundance

P
ar

tu
rit

io
n

da
te

Here the first number is the minimum value whereas the last number is the maximum value. This doesn’t
look very good so I don’t think we will use this.

Finally we can change the plot character both their type, size and color
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abundance",
ylab="Parturition date", cex.lab=1.5, cex.axis=1.2, ylim=c(50, 220),
pch=19, cex=1.1, col="red")

13

0 1 2 3 4 5

50
10

0
15

0
20

0

Food abundance

P
ar

tu
rit

io
n

da
te

We can also add a trend line to the plot. This is done in a slightly different way. Instead of providing the
command within the plot command we specify it afterward and it is applied to the graph that is open. You
can do this in three ways

abline(h=100) abline(v=2) abline(150, -10) where the first value represents the intercept and the second
represents the slope.

or abline(lm(part.tempJulian part.tempconestm1)) where R fits the line from the linear model of the effects
of cones on breeding date.

Note that in the above notation when you are entering these commands into the console while you have an
open ‘Quartz’ plot window then these lines simply get added to the existing open plot.

To bring it all together we can use:
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abudnance",
ylab="Parturition date", cex.lab=1.5, cex.axis=1.2, ylim=c(50, 220),
pch=19, cex=1.1, col="red")
abline(lm(part.temp$Julian~part.temp$conestm1))

14

0 1 2 3 4 5

50
10

0
15

0
20

0

Food abudnance

P
ar

tu
rit

io
n

da
te

We can create a series of boxplots in a similar way if the variable on the x axis is a factor
plot(part.temp$YRF, part.temp$Julian)

1989 1991 1993 1995 1997 1999 2001 2003

10
0

15
0

20
0

x

y

Here the middle line represents the median, the box is the inter-quartile range, the whiskers extend to the
range of the data or 1.5 times the box size from the nearest hinge - whichever is less. Points beyond this are
noted.

We can plot figures side by side on the same page by changing the parameter mfrow. We will indicate how
many rows and columns of figures we want. This one has one row and two columns.
par(mfrow=c(1,2))
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abudnance", ylab="Parturition date", cex.lab=1.5, cex.axis=1.2, ylim=c(50, 220), pch=19, cex=1.1, col="red")

15

abline(lm(part.temp$Julian~part.temp$conestm1))
plot(part.temp$YRF, part.temp$Julian, xlab="Year", ylab="Parturition date")

0 1 2 3 4 5

50
10

0
15

0
20

0

Food abudnance

P
ar

tu
rit

io
n

da
te

1989 1994 1999 2004

10
0

15
0

20
0

Year

P
ar

tu
rit

io
n

da
te

We can either save these graphics once they are produced or we can specify a name and format for them in
advance. To do this we turn on the graphics program, create the graphs, then turn it off.
pdf(file="Sept23Fig.pdf")
par(mfrow=c(1,2))
plot(part.temp$conestm1, part.temp$Julian, xlab="Food abudnance", ylab="Parturition date", cex.lab=1.5, cex.axis=1.2, ylim=c(50, 220), pch=19, cex=1.1, col="red")
abline(lm(part.temp$Julian~part.temp$conestm1))
plot(part.temp$YRF, part.temp$Julian, xlab="Year", ylab="Parturition date")
dev.off()

pdf
2

Note that no new graphics window has been created now. Instead This pdf file has been stored in your
working directory (not your workspace) and is ready to be submitted for publication!!!!

ggplot

All of the figures above were made using base R. This is a bit of an old-fashioned way to make figures because
there is a package called ggplot2 (also included in the tidyverse package) that is extremely flexible and
powerful for making figures. The notation is quite different from what I have described above for base R, but
it is worth learning if you want to make all your figures in R.

16

	Multiple Vectors and Data Frames
	Referencing Elements in a Data Frame
	Importing Data from Excel
	Subsets
	Summarizing By Groups
	Sourcing Code
	Basic Graphics
	ggplot

