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Sampling and Statistical Power
Statistics is about trying to estimate values and draw inferences when there is 
uncertainty about what the true values are.  One of the things that affects our 
uncertainty is the number of samples (i.e. replicates) that we have collected.  This is 
why the sample size (or degrees of freedom) is part of just about any statistical 
test!  So we need to take some time to think about what are true replicates and 
what are not and how the number of replicates that we have affects our ability to 
estimate values and draw inferences.

Uncertainty in Statistics 

The most fundamental underlying principle of 
statistics is that we don’t need to measure all 
individuals/populations/communities etc.. Instead we 
measure some of them and then use the theoretical 
properties of distributions to estimate values (e.g. 
means) and draw inferences (e.g. the treatment mean 
was different from the control mean).  This is always 
done with some uncertainty, which is where P-values 
come in. If we were to measure all individuals in a 
population (e.g. the height of all students in our 
class) then we would know what the average height 
of the class is without any uncertainty. Unlike our 
class, it is not reasonable to measure all individuals. 
Instead we sample individuals from the population 
and use that sample to draw our inferences (e.g. 
estimate the mean height). We are trying to estimate 
the mean height in the population, but now we are 

using a sample of all possible individuals so we have 
some uncertainty about what that true value is. 

Which individuals do we sample? 

Before talking at length about the importance of the 
number of replicates and what true replicates are it is 
worth briefly mentioning some issues with respect to 
how we determine which individuals to sample. 

StatsTree.org

Statistical versus Biological Populations. I will often 
refer to individuals being sampled from populations as 
a short-hand.  In this case the ‘population’ is the 
statistical population from which you want to sample.  
This doesn’t necessarily correspond to a biological 
population. If you were interested in studying 
communities you would sample communities from a 
statistical population of possible communities across 
which you would like to draw your inferences.

http://StatsTree.org
http://StatsTree.org
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The first step in a sampling design is to determine 
what your population of interest is. This is the 
statistical population for which you want to estimate 
values or draw inferences.  Do you want to make 
conclusions about all birds? Just a particular species? 
Just one population of this particular species?  This is 
an important decision because it affects the scale at 
which we sample. Although we often don’t want to 
admit it the scale at which you sample is the scale 
at which you are able to draw your conclusions.  
We would all prefer to sample in one particular 
locality because this is easier but if we want to draw 
global conclusions we need to sample globally. 

Next we need to be explicit about the sampling frame.  
Are we going to restrict our observations to just some 
individuals within that population (e.g. only females, 
only trees > 5 cm in dbh). 

Next we specify a sampling methods. Are we going to 
sample randomly, systematically, haphazardly (more 
on this later).  After collecting our data it is important 
to revisit the sampling protocol. Did it work? Were 
some individual skipped for some reasons?  It is 
important to consider this because what might have 
seemed like random sampling might not in fact have 
been.  For example, the animal personality literature 
has recognized that bold animals are more likely to be 
caught in traps and hence are more likely to be 
sampled in most designs.   

Why does it matter how many 
samples I collect? 

The Law of Large Numbers states that the greater the 
number of samples the closer the sample estimate 
(e.g. of the mean) will come to the true value.  So 
obviously if you flip a coin once or twice you are 
likely to get several instances that suggest that there 
are no heads on the coin.  If you flip a coin 5000 
times you are very likely to get 50% heads and 50% 
tails.  This is the Law of Large Numbers. Why toast 
lands butter-side down more often than not is a 
different story. 

How many replicates do we need?

So it is clear that more replicates will give us an 
estimate that is closer to the true value, but how many 
do we actually need to collect?  How many is 
enough? 

Difference between Accuracy and Precision. 
Precision refers to how similar replicate samples are to 
one another.  Accuracy refers to how similar replicates 
are to some true value.  You might have a very 
expensive balance that weighs to the nearest 0.0001g 
but which is always 10 g too heavy.  In this case the 
expensive balance is precise but not very accurate. 

Steps in Sampling: 

1. Define population of interest.  This about 
what level you want to draw your inferences 
at. 

2. Specify sampling frame (e.g. only live trees, 
females, etc.). 

3. Specification of sampling method. 
4. Collect data. 
5. Review your sampling procedure. 

http://www.telegraph.co.uk/news/uknews/1331810/Breakfast-at-Murphys-or-why-the-toast-lands-butter-side-down.html
http://www.telegraph.co.uk/news/uknews/1331810/Breakfast-at-Murphys-or-why-the-toast-lands-butter-side-down.html
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Sample Size Rules of Thumb:

Collect 10 samples for each level of a factor or 
covariate that you want to include in your model.  So 
for example, if you plan to perform a t-test then have 
at least 20 samples (10 in each class).  If you want to 
perform an ANOVA with 5 levels then try and have 
50 samples.  Note that in a two-way ANOVA with 
two factors each with two levels and you want to look 
for an interaction (more on this later) you would want 
to have 40 replicates (10 for each possible 
combination). If you want to perform a multiple 
regression with 8 predictor variables in the regression 
then try and have 80 replicates.  Covariates are 
easier to measure than replicates are to collect, so 
pay attention to which covariates you think will be 
important! 

I can only count so many plants.  
Should I have many small 
quadrats or a few larger ones?
This is a common problem. You might be assessing 
the abundance of some plant in transects, or quadrats 
or the abundance of a benthic invertebrate in an 
Ekman grabs.  I won’t go into a lot of technical detail 
here, but, in general, biological distributions are 
patchy (a particular species is found in some places 
but not others).  In this case the variance will often 
exceed the mean.  When this is true you are better off 
collecting more samples that are each smaller.  Just 
remember that the scale at which you sample cannot 
be smaller than the biological process you want to 
study (i.e. don’t use a 5cm Ekman grab to try and 
count 10cm organisms!). 

Four Possible Outcomes of a 
Statistical Test
When performing a statistical test (e.g. t-test 
comparing two means) there are four possible 
outcomes.  You might reject the null hypothesis when 
it is in fact false or fail to reject the null hypothesis 
when it is true.  These are both good things because 
we are correct in both cases.  However, we can also 

be wrong in two ways. We might reject the null 
hypothesis when it is in fact true (Type I error) or fail 
to reject the null hypothesis when it is in fact false 
(Type II error).  These are both bad outcomes because 
in both cases we have made a mistake.  The 
probability of falsely rejecting the null hypothesis (i.e. 
saying there is an effect when there really isn’t) is 
referred to as α, which is usually set to be 0.05.  That 
is we are willing to falsely reject the null hypothesis 
5% of the time. 1-α is usually referred to as 
confidence. When α is 0.05 then we will correctly 
accept the null hypothesis 95% of the time.   

Since we are talking about Power and sample size we 
are more worried about the opposite problem. That is, 
we have failed to reject the null hypothesis (and 
claimed no effect) when there in fact was an effect. 
This will occur with frequency β.  So if the null is in 
fact wrong we will mistakenly accept it with 
frequency β and will correctly reject it with frequency 
1-β.  Here, 1-β is referred to as Power. We want to 
have a powerful statistical test so that we correctly 
reject the null hypothesis when it is in fact false (i.e. 
claim an effect when there is in fact an effect). 

Power: A better approach than 
the rule of thumb. 

Power analyses can be extremely useful in project 
planning and some would argue are essential. They 
are also often mistakenly used (or asked for by 
reviewers) when a non-significant result is found.  
These are called a priori and retrospective  power 
analyses, respectively. 
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A prior power analyses can tell you how many 
samples you need to collect in order to detect a given 
effect size (i.e. when should I stop collecting data?).  
Alternatively, some people find themselves with a 
maximum number of possible samples.  This could be 
because they only have so many incubators, their 
population size is small or they have limited time and 
will collect as many samples as possible in that 
limited time.  This is often used as an excuse for not 
completing an a priori power analysis - “I will collect 
as many as I can!”.  However, even in this case power 
analyses are useful because they can tell you what 
effect size you would be able to detect for a given 
sample size.  In this case the answer might indicate 
that the experiment is doomed (i.e. could only detect 
the most massive of effect sizes) before it even 
begins. 

In retrospective power analyses we want to try and 
explain why we did not reject our null hypothesis.  
Was it because our sample size was too small and the 
variance in our samples was too high or was it 
because the effect was non-existent or trivially small. 

Power - the basics
In any statistical test there are 5 basic components: 

1. Effect size (e.g. how different are two 
means?) 

2. Sample size 

3. Variance (or uncertainty) 

4. α (Type I error rate) 

5. β (Type II error rate) 

Power increases with increasing sample size, effect 
size and α.  Power decreases with increasing variance. 

Power (1-β) ranges from zero to one where higher 
values represent greater power (better).  Values higher 
than 0.8 are generally considered to be high  

Performing a Power Analysis
There are several canned programs and web tools that 
will allow you to input 4 of the 5 components listed 
above and get the 5th. Here is an example: Iowa. 

Performing a Power Analysis by 
Hand
I don’t expect that many (any?) of you will ever do a 
power analysis by hand, but I think it is a helpful 
exercise to work through so that you can see how all 
the various parts contribute to the calculation. 

Let’s start with a simple example where we are 
interested in testing whether a standard (assumed 
value) has been exceeded by our sample mean.  The 
test statistic for this test is a t test-statistic.  The way 
you would normally see this is: 

You might not be familiar with the actual formula but 
the test statistic for whether a particular value has 
been exceeded is simply the difference between the 
sample mean and the assumed standard (∆x) divided 

by the standard error, which is the standard deviation 
(s) divided by the square root of the sample size (n). 
What you probably don’t know is that this calculation 
defaults to a power of 0.5 and a t0.5 = 0.  We can 
expand the basic t-test formula to allow us to let 
power vary as: 

So this is only s l i g h t l y 
more complicated and it allows us to do a power 
analysis for such a test.  Notice that the 5 parts of the 

€ 

tα =
Δ x

s / n

€ 

tα + t1−β =
Δ x

s / n

http://homepage.stat.uiowa.edu/~rlenth/Power/
http://homepage.stat.uiowa.edu/~rlenth/Power/
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€ 

tα + t1−β =
Δ x

s / n
equation correspond to the 5 items listed above (effect 
size, sample size, variance, alpha and beta). 

We now have everything that we need to do a power 
analysis.  All we need to do is rearrange this equation 
to answer either of the following questions: 

1. I want a certain amount of power to detect a given 
effect size.  How large does my experiment need to 
be?  That is. given β, ∆x and α, how large does n 
need to be? 

2. I have a certain budget for a fixed experiment size.  
What will my power be to detect a given effect 
size? Given n, ∆x and α, what is my β ?

Power - A worked example.
Let’s say we are planning an experiment to test the 
effects of Nitrogen on plant biomass and we want to 
know how many samples we ought to collect.  We 
know from the literature or from a pilot study that 
average biomass is ~ 103 kg/ha and the sd of this 
biomass is 16 kg/ha.  Note that the latter value is 
often hard to estimate so sometimes you just need to 
guess.  You want high power so lets say β = 0.10 
(power = 0.90).  You don’t believe in all this P = 0.05 
junk so you are going to set your α = 0.10.  You are 
predicting an increase in biomass so this is a one-
tailed α. Finally, you use your biological intuition to 
determine that you think a 20% increase in biomass is 
a biologically meaningful effect.   

One of the great benefits of an a priori power analysis 
is that it forces you to think about biologically 
meaningful effect sizes BEFORE you perform your 
study.  So a 20% increase from 103 kg/ha would be 
an increase of 20.6 kg/ha. 

So we have all the ingredients for our power analysis.  
We can now take the formula for a t-test to compare 
the means of two groups (slightly different than 
above)... 

...and rearrange it to solve for the n that would be 
needed. 

From above, s2 = 256, ∆x2 = 424.36, and n is the 
sample size in each group.  Now one complication is 
that tα and t1-β depend on the df, which depends on n 
(df = 2n-2 in this case).  We solve this problem by 
starting with a large df (t0.1, df = large = 1.28). 

n* = 2*(1.28 + 1.28)2 * 0.60 

    = 7.86 

Remember that n* is the sample size in each group.  
So our new df = 14 and t0.1, df = large = 1.35 

n** = 2*(1.35 + 1.35)2 * 0.60 

      = 8.75 

If we repeat this process a couple more times we 
converge on a value of 8.7.  So if we wanted to detect 
a 20% increase in biomass in our N treated plants 
with 90% power and an α of 0.1 then we would need 
to have 9 control plants and 9 experimental plants.  

Scree Plots
Sometimes we don’t have a known effect size that we 
are aiming for.  Instead we want to see how various 
sample sizes affect the detectable effect size.  We can 
do this by performing a power analysis for many 
different effect sizes.  If we plot n against the effect 
size this is called a Scree Plot.  It is called this 
because it looks like the rocks (scree) that pile up at 
the base of a mountain. The main point of a scree plot 
is that it is non-linear, so there is an area of high-
returns and an area of low-returns.  For example, if 

€ 

ˆ n = 2(tα + t1−β )2 s2

Δ x
2
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your sample size is below 100 you will see a pretty 
large decrease the detectable effect size for a given 
increase in sample size.  However, once the sample 
size gets above 100 you will get only a marginal 
decrease in the detectable effect size for even very 
large increases in sample size (e.g. 200 to 500). 

Retrospective Power Analyses
Reviewers often mistakenly ask for and authors often 
mistakenly provide an estimate of power for a non-
significant analysis that has already been performed.  
This is called “Observed Power”.  This approach is 
NOT useful.  It will always yield low power.  This is 
because there are only 5 pieces to the puzzle.  If you 
analysis has already yielded a P-value greater than 
0.05 the by definition you did not have adequate 
power to detect the observed effect size with the 
observed sample size at an α of 0.05. So ‘Observed 
Power’ is just another way of stating your P-value.  
More specifically, recall our equation above... 

When the effect size, sd and n are fixed then tα (and 
hence P) are related negatively to power.  There is a 
graph in the Hoenig & Heisey (2001) paper that 
shows this nicely. 

So when are a posteriori power analyses useful?  
They can be useful to determine what effect size 
could have been detected in your study given sd, n.  
In this way you can determine whether your 
experiment could have rejected the null hypothesis in 
interesting cases. 

Could my experiment reject the null hypothesis in 
interesting cases? 

In my view most interesting retrospective questions 
can be answered with effect sizes and consideration 
of biological significance. 

Another way in which retrospective power analyses 
are useful is if you turn them around and use them as  
prospective power analyses for future studies. 

€ 

tα + t1−β =
Δ x

s / n

-from Hoenig & Heisey, 2001
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Power Summary
• Power is the probability of rejecting the null when it 

is false 

• Power is increased by sample size, effect size, α 

• Power is decreased by variance 

• A Priori power analyses are essential! 

• A Posteriori (retrospective) power analyses are 
often asked for but are of limited use 


